Basal Cancer Cell Survival Involves JNK2 Suppression of a Novel JNK1/c-Jun/Bcl-3 Apoptotic Network
نویسندگان
چکیده
BACKGROUND The regulation of apoptosis under basal (non-stress) conditions is crucial for normal mammalian development and also for normal cellular turnover in different tissues throughout life. Deficient regulation of basal apoptosis, or its perturbation, can result in impaired development and/or disease states including cancer. In contrast to stress-induced apoptosis the regulation of apoptosis under basal conditions is poorly understood. To address this issue we have compared basal- and stress-induced apoptosis in human epithelial cells of normal and cancerous origins. For this purpose we focussed our study on the opposing pro-apoptotic JNK/anti-apoptotic NFkappaB pathways. METHODOLOGY/PRINCIPAL FINDINGS Combinatorial RNAi plus gene knockout were employed to access and map basal regulatory pathways of apoptosis. Follow-on, in-depth analyses included exogenous expression of phosphorylation mutants and chromatin immunoprecipitation. We demonstrate that basal apoptosis is constitutively suppressed by JNK2 in a range of human cancer cell lines. This effect was not observed in non-cancer cells. Silencing JNK2 by RNAi resulted in JNK1-dependent apoptosis of cancer cells via up-regulation of the AP-1 factor c-Jun. Unexpectedly we discovered that JNK1 and c-Jun promote basal apoptosis in the absence of "activating phosphorylations" typically induced by stress. Hypo-phosphorylated c-Jun accumulated to high levels following JNK2 silencing, auto-regulated its own expression and suppressed expression of Bcl-3, an unusual IkappaB protein and regulator of NFkappaB. Basal apoptosis was mediated by components of the TNFalpha response pathway but was mechanistically distinct from TNFalpha-induced apoptosis. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that mechanistically distinct pathways operate to regulate apoptosis in mammalian cells under basal (physiological) versus stress-induced conditions. We also describe a novel apoptotic network which governs the basal survival of cancer cells. Such information is crucial for understanding normal cellular turnover during mammalian development and subsequently throughout life. This information also opens new avenues for therapeutic intervention in human proliferative disease states including cancer.
منابع مشابه
C-Jun Nh2-Terminal Kinase (Jnk)1 and Jnk2 Have Similar and Stage-Dependent Roles in Regulating T Cell Apoptosis and Proliferation
Apoptotic and mitogenic stimuli activate c-Jun NH2-terminal kinases (JNKs) in T cells. Although T cells express both JNK1 and JNK2 isozymes, the absence of JNK2 alone can result in resistance to anti-CD3-induced thymocyte apoptosis and defective mature T cell proliferation. Similar defects in thymocyte apoptosis and mature T cell proliferation, the latter due to reduced interleukin 2 production...
متن کامل-Terminal Kinase (JNK)1 and JNK2 Have Similar and Stage-dependent Roles in Regulating T Cell Apoptosis and Proliferation
Apoptotic and mitogenic stimuli activate c-Jun NH 2 -terminal kinases (JNKs) in T cells. Although T cells express both JNK1 and JNK2 isozymes, the absence of JNK2 alone can result in resistance to anti-CD3–induced thymocyte apoptosis and defective mature T cell proliferation. Similar defects in thymocyte apoptosis and mature T cell proliferation, the latter due to reduced interleukin 2 producti...
متن کاملBasal c-Jun NH2-terminal protein kinase activity is essential for survival and proliferation of T-cell acute lymphoblastic leukemia cells.
Hyperactivation of c-Jun NH2-terminal protein kinase (JNK) has been found in various malignant lymphocytes and inhibition of JNK activity leads to cell cycle arrest and apoptosis. However, the role of JNK activity in the oncogenic growth of T-cell acute lymphoblastic leukemia (T-ALL) cells remains largely unknown. Here, we report that treatment of T-ALL cells with JNK inhibitors led to cell cyc...
متن کاملInsulin-like growth factor-I and Bcl-X(L) inhibit c-jun N-terminal kinase activation and rescue Schwann cells from apoptosis.
We previously reported that Schwann cells undergo apoptosis after serum withdrawal. Insulin-like growth factor-I, via phosphatidylinositol-3 kinase, inhibits caspase activation and rescues Schwann cells from serum withdrawal-induced apoptosis. In this study, we examined the role of c-jun N-terminal protein kinase (JNK) in Schwann cell apoptosis induced by serum withdrawal. Activation of both JN...
متن کاملJNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms.
Phosphorylation of the N-terminal domain of Jun by the Jun kinases (JNKs) modulates the transcriptional activity of AP-1, a dimeric transcription factor typically composed of c-Jun and c-Fos, the latter being essential for osteoclast differentiation. Using mice lacking JNK1 or JNK2, we demonstrate that JNK1, but not JNK2, is specifically activated by the osteoclast-differentiating factor RANKL....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009